skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Han, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 10, 2026
  2. The Boltzmann Transport Equation (BTE) for phonons is often used to predict thermal transport at submicron scales in semiconductors. The BTE is a seven-dimensional nonlinear integro-differential equation, resulting in difficulty in its solution even after linearization under the single relaxation time approximation. Furthermore, parallelization and load balancing are challenging, given the high dimensionality and variability of the linear systems' conditioning. This work presents a 'synthetic' scalable parallelization method for solving the BTE on large-scale systems. The method includes cell-based parallelization, combined band+cell-based parallelization, and batching technique. The essential computational ingredient of cell-based parallelization is a sparse matrix-vector product (SpMV) that can be integrated with an existing linear algebra library like PETSc. The combined approach enhances the cell-based method by further parallelizing the band dimension to take advantage of low inter-band communication costs. For the batched approach, we developed a batched SpMV that enables multiple linear systems to be solved simultaneously, merging many MPI messages to reduce communication costs, thus maintaining scalability when the grain size becomes very small. We present numerical experiments to demonstrate our method's excellent speedups and scalability up to 16384 cores for a problem with 12.6 billion unknowns. 
    more » « less
  3. Poon, Y.-T. (Ed.)
  4. null (Ed.)
    Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d . 
    more » « less
  5. null (Ed.)
    Because electron transfer reactions are fundamental to life processes, such as respiration, vision, and energy catabolism, it is critically important to understand the relationship between functional states of individual redox enzymes and the macroscopically observed phenotype, which results from averaging over all copies of the same enzyme. To address this problem, we have developed a new technology, based on a bifunctional nanoelectrochemical-nanophotonic architecture - the electrochemical zero mode waveguide (E-ZMW) - that can couple biological electron transfer reactions to luminescence, making it possible to observe single electron transfer events in redox enzymes. Here we describe E-ZMW architectures capable of supporting potential-controlled redox reactions with single copies of the oxidoreductase enzyme, glutathione reductase, GR, and extend these capabilities to electron transfer events where reactive oxygen species are synthesized within the  100 zL volume of the nanopore. 
    more » « less